ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.09169
13
11

Convolutional Simplex Projection Network (CSPN) for Weakly Supervised Semantic Segmentation

24 July 2018
Rania Briq
Michael Moeller
Juergen Gall
    SSeg
ArXivPDFHTML
Abstract

Weakly supervised semantic segmentation has been a subject of increased interest due to the scarcity of fully annotated images. We introduce a new approach for solving weakly supervised semantic segmentation with deep Convolutional Neural Networks (CNNs). The method introduces a novel layer which applies simplex projection on the output of a neural network using area constraints of class objects. The proposed method is general and can be seamlessly integrated into any CNN architecture. Moreover, the projection layer allows strongly supervised models to be adapted to weakly supervised models effortlessly by substituting ground truth labels. Our experiments have shown that applying such an operation on the output of a CNN improves the accuracy of semantic segmentation in a weakly supervised setting with image-level labels.

View on arXiv
Comments on this paper