26
5

Learning Inputs in Greybox Fuzzing

Abstract

Greybox fuzzing is a lightweight testing approach that effectively detects bugs and security vulnerabilities. However, greybox fuzzers randomly mutate program inputs to exercise new paths; this makes it challenging to cover code that is guarded by complex checks. In this paper, we present a technique that extends greybox fuzzing with a method for learning new inputs based on already explored program executions. These inputs can be learned such that they guide exploration toward specific executions, for instance, ones that increase path coverage or reveal vulnerabilities. We have evaluated our technique and compared it to traditional greybox fuzzing on 26 real-world benchmarks. In comparison, our technique significantly increases path coverage (by up to 3X) and detects more bugs (up to 38% more), often orders-of-magnitude faster.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.