ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.07870
13
52

CrowdMove: Autonomous Mapless Navigation in Crowded Scenarios

19 July 2018
Tingxiang Fan
Xinjing Cheng
Jia Pan
Tianyi Zhou
Ruigang Yang
ArXivPDFHTML
Abstract

Navigation is an essential capability for mobile robots. In this paper, we propose a generalized yet effective 3M (i.e., multi-robot, multi-scenario, and multi-stage) training framework. We optimize a mapless navigation policy with a robust policy gradient algorithm. Our method enables different types of mobile platforms to navigate safely in complex and highly dynamic environments, such as pedestrian crowds. To demonstrate the superiority of our method, we test our methods with four kinds of mobile platforms in four scenarios. Videos are available at https://sites.google.com/view/crowdmove.

View on arXiv
Comments on this paper