ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.06752
9
22

Gradient Band-based Adversarial Training for Generalized Attack Immunity of A3C Path Finding

18 July 2018
Tong Chen
Wenjia Niu
Yingxiao Xiang
XiaoXuan Bai
Jiqiang Liu
Zhen Han
Gang Li
    AAML
ArXivPDFHTML
Abstract

As adversarial attacks pose a serious threat to the security of AI system in practice, such attacks have been extensively studied in the context of computer vision applications. However, few attentions have been paid to the adversarial research on automatic path finding. In this paper, we show dominant adversarial examples are effective when targeting A3C path finding, and design a Common Dominant Adversarial Examples Generation Method (CDG) to generate dominant adversarial examples against any given map. In addition, we propose Gradient Band-based Adversarial Training, which trained with a single randomly choose dominant adversarial example without taking any modification, to realize the "1:N" attack immunity for generalized dominant adversarial examples. Extensive experimental results show that, the lowest generation precision for CDG algorithm is 91.91%, and the lowest immune precision for Gradient Band-based Adversarial Training is 93.89%, which can prove that our method can realize the generalized attack immunity of A3C path finding with a high confidence.

View on arXiv
Comments on this paper