ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01477
  4. Cited By
Diversity in Machine Learning

Diversity in Machine Learning

4 July 2018
Z. Gong
P. Zhong
Weidong Hu
ArXivPDFHTML

Papers citing "Diversity in Machine Learning"

34 / 34 papers shown
Title
MUSS: Multilevel Subset Selection for Relevance and Diversity
MUSS: Multilevel Subset Selection for Relevance and Diversity
Vu Nguyen
Andrey Kan
82
0
0
14 Mar 2025
An End-to-End Joint Unsupervised Learning of Deep Model and
  Pseudo-Classes for Remote Sensing Scene Representation
An End-to-End Joint Unsupervised Learning of Deep Model and Pseudo-Classes for Remote Sensing Scene Representation
Z. Gong
P. Zhong
Weidong Hu
Fang Liu
Bingwei Hui
SSL
3DPC
47
1
0
18 Mar 2019
Fast determinantal point processes via distortion-free intermediate
  sampling
Fast determinantal point processes via distortion-free intermediate sampling
Michal Derezinski
58
40
0
08 Nov 2018
Improving Sequential Determinantal Point Processes for Supervised Video
  Summarization
Improving Sequential Determinantal Point Processes for Supervised Video Summarization
Aidean Sharghi
Ali Borji
Chengtao Li
Tianbao Yang
Boqing Gong
AI4TS
55
47
0
28 Jul 2018
Active Mini-Batch Sampling using Repulsive Point Processes
Active Mini-Batch Sampling using Repulsive Point Processes
Cheng Zhang
Cengiz Öztireli
Stephan Mandt
G. Salvi
30
36
0
08 Apr 2018
Tagging like Humans: Diverse and Distinct Image Annotation
Tagging like Humans: Diverse and Distinct Image Annotation
Baoyuan Wu
Weidong Chen
Peng Sun
Wen Liu
Guohao Li
Siwei Lyu
VLM
50
47
0
31 Mar 2018
Diversity-Promoting Bayesian Learning of Latent Variable Models
Diversity-Promoting Bayesian Learning of Latent Variable Models
P. Xie
Jun Zhu
Eric Xing
52
33
0
23 Nov 2017
Learning Detection with Diverse Proposals
Learning Detection with Diverse Proposals
S. Azadi
Jiashi Feng
Trevor Darrell
45
22
0
11 Apr 2017
Diversified Texture Synthesis with Feed-forward Networks
Diversified Texture Synthesis with Feed-forward Networks
Yijun Li
Chen Fang
Jimei Yang
Zhaowen Wang
Xin Lu
Ming-Hsuan Yang
40
268
0
05 Mar 2017
Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles
Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles
Stefan Lee
Senthil Purushwalkam
Michael Cogswell
Viresh Ranjan
David J. Crandall
Dhruv Batra
BDL
UQCV
OOD
63
178
0
24 Jun 2016
Joint M-Best-Diverse Labelings as a Parametric Submodular Minimization
Joint M-Best-Diverse Labelings as a Parametric Submodular Minimization
Alexander Kirillov
Alexander Shekhovtsov
Carsten Rother
Bogdan Savchynskyy
29
12
0
22 Jun 2016
An ensemble diversity approach to supervised binary hashing
An ensemble diversity approach to supervised binary hashing
M. A. Carreira-Perpiñán
Ramin Raziperchikolaei
19
22
0
04 Feb 2016
Mutual Information and Diverse Decoding Improve Neural Machine
  Translation
Mutual Information and Diverse Decoding Improve Neural Machine Translation
Jiwei Li
Dan Jurafsky
60
120
0
04 Jan 2016
Latent Variable Modeling with Diversity-Inducing Mutual Angular
  Regularization
Latent Variable Modeling with Diversity-Inducing Mutual Angular Regularization
P. Xie
Yuntian Deng
Eric Xing
DRL
49
9
0
23 Dec 2015
On the Generalization Error Bounds of Neural Networks under
  Diversity-Inducing Mutual Angular Regularization
On the Generalization Error Bounds of Neural Networks under Diversity-Inducing Mutual Angular Regularization
P. Xie
Yuntian Deng
Eric Xing
85
28
0
23 Nov 2015
Why M Heads are Better than One: Training a Diverse Ensemble of Deep
  Networks
Why M Heads are Better than One: Training a Diverse Ensemble of Deep Networks
Stefan Lee
Senthil Purushwalkam
Michael Cogswell
David J. Crandall
Dhruv Batra
FedML
UQCV
86
316
0
19 Nov 2015
Fixed-point algorithms for learning determinantal point processes
Fixed-point algorithms for learning determinantal point processes
Zelda E. Mariet
S. Sra
61
53
0
04 Aug 2015
Inference for determinantal point processes without spectral knowledge
Inference for determinantal point processes without spectral knowledge
Rémi Bardenet
Michalis K. Titsias
47
24
0
04 Jul 2015
DeepDriving: Learning Affordance for Direct Perception in Autonomous
  Driving
DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving
Chenyi Chen
Ari Seff
A. Kornhauser
Jianxiong Xiao
99
1,762
0
01 May 2015
Block-Wise MAP Inference for Determinantal Point Processes with
  Application to Change-Point Detection
Block-Wise MAP Inference for Determinantal Point Processes with Application to Change-Point Detection
Martin Jinye Zhang
Zhijian Ou
38
9
0
20 Mar 2015
Diverse Landmark Sampling from Determinantal Point Processes for
  Scalable Manifold Learning
Diverse Landmark Sampling from Determinantal Point Processes for Scalable Manifold Learning
Christian Wachinger
Polina Golland
51
16
0
11 Mar 2015
Automatic Discovery and Optimization of Parts for Image Classification
Automatic Discovery and Optimization of Parts for Image Classification
S. N. Parizi
Andrea Vedaldi
Andrew Zisserman
Pedro F. Felzenszwalb
OCL
53
59
0
20 Dec 2014
End-to-End Integration of a Convolutional Network, Deformable Parts
  Model and Non-Maximum Suppression
End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression
Li Wan
David Eigen
Rob Fergus
76
99
0
19 Nov 2014
Submodular meets Structured: Finding Diverse Subsets in
  Exponentially-Large Structured Item Sets
Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets
Adarsh Prasad
Stefanie Jegelka
Dhruv Batra
45
68
0
06 Nov 2014
Expectation-Maximization for Learning Determinantal Point Processes
Expectation-Maximization for Learning Determinantal Point Processes
Jennifer Gillenwater
Alex Kulesza
E. Fox
B. Taskar
67
100
0
04 Nov 2014
Maximizing Diversity for Multimodal Optimization
Maximizing Diversity for Multimodal Optimization
F. O. França
53
1
0
10 Jun 2014
Learning to Diversify via Weighted Kernels for Classifier Ensemble
Learning to Diversify via Weighted Kernels for Classifier Ensemble
Xu-Cheng Yin
Chun Yang
Hongwei Hao
46
13
0
04 Jun 2014
Learning the Parameters of Determinantal Point Process Kernels
Learning the Parameters of Determinantal Point Process Kernels
Raja Hafiz Affandi
E. Fox
Ryan P. Adams
B. Taskar
71
97
0
20 Feb 2014
Markov Determinantal Point Processes
Markov Determinantal Point Processes
Raja Hafiz Affandi
Alex Kulesza
E. Fox
73
43
0
16 Oct 2012
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
235
1,134
0
25 Jul 2012
Determinantal point process models and statistical inference : Extended
  version
Determinantal point process models and statistical inference : Extended version
F. Lavancier
Jesper Møller
E. Rubak
72
239
0
22 May 2012
Exploiting Unlabeled Data to Enhance Ensemble Diversity
Exploiting Unlabeled Data to Enhance Ensemble Diversity
Min-Ling Zhang
Zhi Zhou
FedML
76
75
0
19 Sep 2009
Maximum Entropy Discrimination Markov Networks
Maximum Entropy Discrimination Markov Networks
Jun Zhu
Eric Xing
OOD
64
61
0
18 Jan 2009
The use of entropy to measure structural diversity
The use of entropy to measure structural diversity
L. Masisi
F. Nelwamondo
T. Marwala
82
59
0
20 Oct 2008
1