ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.00737
14
14

Learning Goal-Oriented Visual Dialog via Tempered Policy Gradient

2 July 2018
Rui Zhao
Volker Tresp
    LLMAG
ArXivPDFHTML
Abstract

Learning goal-oriented dialogues by means of deep reinforcement learning has recently become a popular research topic. However, commonly used policy-based dialogue agents often end up focusing on simple utterances and suboptimal policies. To mitigate this problem, we propose a class of novel temperature-based extensions for policy gradient methods, which are referred to as Tempered Policy Gradients (TPGs). On a recent AI-testbed, i.e., the GuessWhat?! game, we achieve significant improvements with two innovations. The first one is an extension of the state-of-the-art solutions with Seq2Seq and Memory Network structures that leads to an improvement of 7%. The second one is the application of our newly developed TPG methods, which improves the performance additionally by around 5% and, even more importantly, helps produce more convincing utterances.

View on arXiv
Comments on this paper