ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.00217
23
13

The Challenge of Multi-Operand Adders in CNNs on FPGAs: How not to solve it!

30 June 2018
K. Abdelouahab
F. Berry
Maxime Pelcat
ArXiv (abs)PDFHTML
Abstract

Convolutional Neural Networks (CNNs) are computationally intensive algorithms that currently require dedicated hardware to be executed. In the case of FPGA-Based accelerators, we point-out in this work the challenge of Multi-Operand Adders (MOAs) and their high resource utilization in an FPGA implementation of a CNN. To address this challenge, two optimization strategies, that rely on time-multiplexing and approximate computing, are investigated. At first glance, the two strategies looked promising to reduce the footprint of a given architectural mapping, but when synthesized on the device, none of them gave the expected results. Experimental sections analyze the reasons of these unexpected results.

View on arXiv
Comments on this paper