ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.11096
8
30

Recovering Trees with Convex Clustering

28 June 2018
Eric C. Chi
Stefan Steinerberger
ArXivPDFHTML
Abstract

Convex clustering refers, for given {x1,…,xn}⊂Rp\left\{x_1, \dots, x_n\right\} \subset \mathbb{R}^p{x1​,…,xn​}⊂Rp, to the minimization of \begin{eqnarray*} u(\gamma) & = & \underset{u_1, \dots, u_n }{\arg\min}\;\sum_{i=1}^{n}{\lVert x_i - u_i \rVert^2} + \gamma \sum_{i,j=1}^{n}{w_{ij} \lVert u_i - u_j\rVert},\\ \end{eqnarray*} where wij≥0w_{ij} \geq 0wij​≥0 is an affinity that quantifies the similarity between xix_ixi​ and xjx_jxj​. We prove that if the affinities wijw_{ij}wij​ reflect a tree structure in the {x1,…,xn}\left\{x_1, \dots, x_n\right\}{x1​,…,xn​}, then the convex clustering solution path reconstructs the tree exactly. The main technical ingredient implies the following combinatorial byproduct: for every set {x1,…,xn}⊂Rp\left\{x_1, \dots, x_n \right\} \subset \mathbb{R}^p{x1​,…,xn​}⊂Rp of n≥2n \geq 2n≥2 distinct points, there exist at least n/6n/6n/6 points with the property that for any of these points xxx there is a unit vector v∈Rpv \in \mathbb{R}^pv∈Rp such that, when viewed from xxx, `most' points lie in the direction vvv \begin{eqnarray*} \frac{1}{n-1}\sum_{i=1 \atop x_i \neq x}^{n}{ \left\langle \frac{x_i - x}{\lVert x_i - x \rVert}, v \right\rangle} & \geq & \frac{1}{4}. \end{eqnarray*}

View on arXiv
Comments on this paper