ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.10866
4
11

Exploring Architectures for CNN-Based Word Spotting

28 June 2018
E. Rusakov
Sebastian Sudholt
Fabian Wolf
G. Fink
ArXivPDFHTML
Abstract

The goal in word spotting is to retrieve parts of document images which are relevant with respect to a certain user-defined query. The recent past has seen attribute-based Convolutional Neural Networks take over this field of research. As is common for other fields of computer vision, the CNNs used for this task are already considerably deep. The question that arises, however, is: How complex does a CNN have to be for word spotting? Are increasingly deeper models giving increasingly better results or does performance behave asymptotically for these architectures? On the other hand, can similar results be obtained with a much smaller CNN? The goal of this paper is to give an answer to these questions. Therefore, the recently successful TPP-PHOCNet will be compared to a Residual Network, a Densely Connected Convolutional Network and a LeNet architecture empirically. As will be seen in the evaluation, a complex model can be beneficial for word spotting on harder tasks such as the IAM Offline Database but gives no advantage for easier benchmarks such as the George Washington Database.

View on arXiv
Comments on this paper