ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.10423
19
1

Implementing Convex Optimization in R: Two Econometric Examples

27 June 2018
Zhan Gao
Zhentao Shi
ArXivPDFHTML
Abstract

Economists specify high-dimensional models to address heterogeneity in empirical studies with complex big data. Estimation of these models calls for optimization techniques to handle a large number of parameters. Convex problems can be effectively executed in modern statistical programming languages. We complement Koenker and Mizera (2014)'s work on numerical implementation of convex optimization, with focus on high-dimensional econometric estimators. Combining R and the convex solver MOSEK achieves faster speed and equivalent accuracy, demonstrated by examples from Su, Shi, and Phillips (2016) and Shi (2016). Robust performance of convex optimization is witnessed cross platforms. The convenience and reliability of convex optimization in R make it easy to turn new ideas into prototypes.

View on arXiv
Comments on this paper