ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.09786
16
8

Social Media and User Privacy

26 June 2018
Ghazaleh Beigi
ArXivPDFHTML
Abstract

Online users generate tremendous amounts of data. To better serve users, it is required to share the user-related data among researchers, advertisers and application developers. Publishing such data would raise more concerns on user privacy. To encourage data sharing and mitigate user privacy concerns, a number of anonymization and de-anonymization algorithms have been developed to help protect privacy of users. This paper reviews my doctoral research on online users privacy specifically in social media. In particular, I propose a new adversarial attack specialized for social media data. I further provide a principled way to assess effectiveness of anonymizing different aspects of social media data. My work sheds light on new privacy risks in social media data due to innate heterogeneity of user-generated data.

View on arXiv
Comments on this paper