ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.09594
22
375

Tracking Emerges by Colorizing Videos

25 June 2018
Carl Vondrick
Abhinav Shrivastava
Alireza Fathi
S. Guadarrama
Kevin Patrick Murphy
ArXivPDFHTML
Abstract

We use large amounts of unlabeled video to learn models for visual tracking without manual human supervision. We leverage the natural temporal coherency of color to create a model that learns to colorize gray-scale videos by copying colors from a reference frame. Quantitative and qualitative experiments suggest that this task causes the model to automatically learn to track visual regions. Although the model is trained without any ground-truth labels, our method learns to track well enough to outperform the latest methods based on optical flow. Moreover, our results suggest that failures to track are correlated with failures to colorize, indicating that advancing video colorization may further improve self-supervised visual tracking.

View on arXiv
Comments on this paper