ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.09521
93
53

Self-supervised Learning for Dense Depth Estimation in Monocular Endoscopy

25 June 2018
Xingtong Liu
Ayushi Sinha
Mathias Unberath
M. Ishii
Gregory Hager
Russell H. Taylor
A. Reiter
    MDE
ArXivPDFHTML
Abstract

We present a self-supervised approach to training convolutional neural networks for dense depth estimation from monocular endoscopy data without a priori modeling of anatomy or shading. Our method only requires sequential data from monocular endoscopic videos and a multi-view stereo reconstruction method, e.g. structure from motion, that supervises learning in a sparse but accurate manner. Consequently, our method requires neither manual interaction, such as scaling or labeling, nor patient CT in the training and application phases. We demonstrate the performance of our method on sinus endoscopy data from two patients and validate depth prediction quantitatively using corresponding patient CT scans where we found submillimeter residual errors.

View on arXiv
Comments on this paper