ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.07585
24
48

Regression adjustment in completely randomized experiments with a diverging number of covariates

20 June 2018
Lihua Lei
Peng Ding
ArXivPDFHTML
Abstract

Randomized experiments have become important tools in empirical research. In a completely randomized treatment-control experiment, the simple difference in means of the outcome is unbiased for the average treatment effect, and covariate adjustment can further improve the efficiency without assuming a correctly specified outcome model. In modern applications, experimenters often have access to many covariates, motivating the need for a theory of covariate adjustment under the asymptotic regime with a diverging number of covariates. We study the asymptotic properties of covariate adjustment under the potential outcomes model and propose a bias-corrected estimator that is consistent and asymptotically normal under weaker conditions. Our theory is purely randomization-based without imposing any parametric outcome model assumptions. To prove the theoretical results, we develop novel vector and matrix concentration inequalities for sampling without replacement.

View on arXiv
Comments on this paper