ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.05096
21
6

Introducing user-prescribed constraints in Markov chains for nonlinear dimensionality reduction

13 June 2018
P. Dixit
ArXivPDFHTML
Abstract

Stochastic kernel based dimensionality reduction approaches have become popular in the last decade. The central component of many of these methods is a symmetric kernel that quantifies the vicinity between pairs of data points and a kernel-induced Markov chain on the data. Typically, the Markov chain is fully specified by the kernel through row normalization. However, in many cases, it is desirable to impose user-specified stationary-state and dynamical constraints on the Markov chain. Unfortunately, no systematic framework exists to impose such user-defined constraints. Here, we introduce a path entropy maximization based approach to derive the transition probabilities of Markov chains using a kernel and additional user-specified constraints. We illustrate the usefulness of these Markov chains with examples.

View on arXiv
Comments on this paper