ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.04624
9
46

Organizing Experience: A Deeper Look at Replay Mechanisms for Sample-based Planning in Continuous State Domains

12 June 2018
Yangchen Pan
M. Zaheer
Adam White
Andrew Patterson
Martha White
ArXivPDFHTML
Abstract

Model-based strategies for control are critical to obtain sample efficient learning. Dyna is a planning paradigm that naturally interleaves learning and planning, by simulating one-step experience to update the action-value function. This elegant planning strategy has been mostly explored in the tabular setting. The aim of this paper is to revisit sample-based planning, in stochastic and continuous domains with learned models. We first highlight the flexibility afforded by a model over Experience Replay (ER). Replay-based methods can be seen as stochastic planning methods that repeatedly sample from a buffer of recent agent-environment interactions and perform updates to improve data efficiency. We show that a model, as opposed to a replay buffer, is particularly useful for specifying which states to sample from during planning, such as predecessor states that propagate information in reverse from a state more quickly. We introduce a semi-parametric model learning approach, called Reweighted Experience Models (REMs), that makes it simple to sample next states or predecessors. We demonstrate that REM-Dyna exhibits similar advantages over replay-based methods in learning in continuous state problems, and that the performance gap grows when moving to stochastic domains, of increasing size.

View on arXiv
Comments on this paper