ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.04327
25
44

ISO-Standard Domain-Independent Dialogue Act Tagging for Conversational Agents

12 June 2018
S. Mezza
Alessandra Cervone
G. Tortoreto
Evgeny A. Stepanov
Giuseppe Riccardi
ArXiv (abs)PDFHTML
Abstract

Dialogue Act (DA) tagging is crucial for spoken language understanding systems, as it provides a general representation of speakers' intents, not bound to a particular dialogue system. Unfortunately, publicly available data sets with DA annotation are all based on different annotation schemes and thus incompatible with each other. Moreover, their schemes often do not cover all aspects necessary for open-domain human-machine interaction. In this paper, we propose a methodology to map several publicly available corpora to a subset of the ISO standard, in order to create a large task-independent training corpus for DA classification. We show the feasibility of using this corpus to train a domain-independent DA tagger testing it on out-of-domain conversational data, and argue the importance of training on multiple corpora to achieve robustness across different DA categories.

View on arXiv
Comments on this paper