ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.02311
16
310

Unsupervised Attention-guided Image to Image Translation

6 June 2018
Youssef A. Mejjati
Christian Richardt
James Tompkin
Darren Cosker
K. Kim
ArXivPDFHTML
Abstract

Current unsupervised image-to-image translation techniques struggle to focus their attention on individual objects without altering the background or the way multiple objects interact within a scene. Motivated by the important role of attention in human perception, we tackle this limitation by introducing unsupervised attention mechanisms that are jointly adversarialy trained with the generators and discriminators. We demonstrate qualitatively and quantitatively that our approach is able to attend to relevant regions in the image without requiring supervision, and that by doing so it achieves more realistic mappings compared to recent approaches.

View on arXiv
Comments on this paper