ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.10900
33
0

Hierarchical clustering with deep Q-learning

28 May 2018
Richard Forster
A. Fulop
ArXiv (abs)PDFHTML
Abstract

The reconstruction and analyzation of high energy particle physics data is just as important as the analyzation of the structure in real world networks. In a previous study it was explored how hierarchical clustering algorithms can be combined with kt cluster algorithms to provide a more generic clusterization method. Building on that, this paper explores the possibilities to involve deep learning in the process of cluster computation, by applying reinforcement learning techniques. The result is a model, that by learning on a modest dataset of 10; 000 nodes during 70 epochs can reach 83; 77% precision in predicting the appropriate clusters.

View on arXiv
Comments on this paper