ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09622
20
13

SOSELETO: A Unified Approach to Transfer Learning and Training with Noisy Labels

24 May 2018
Or Litany
Daniel Freedman
    NoLa
ArXivPDFHTML
Abstract

We present SOSELETO (SOurce SELEction for Target Optimization), a new method for exploiting a source dataset to solve a classification problem on a target dataset. SOSELETO is based on the following simple intuition: some source examples are more informative than others for the target problem. To capture this intuition, source samples are each given weights; these weights are solved for jointly with the source and target classification problems via a bilevel optimization scheme. The target therefore gets to choose the source samples which are most informative for its own classification task. Furthermore, the bilevel nature of the optimization acts as a kind of regularization on the target, mitigating overfitting. SOSELETO may be applied to both classic transfer learning, as well as the problem of training on datasets with noisy labels; we show state of the art results on both of these problems.

View on arXiv
Comments on this paper