ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09488
25
146

VisemeNet: Audio-Driven Animator-Centric Speech Animation

24 May 2018
Yang Zhou
Shan Xu
Chris Landreth
E. Kalogerakis
Subhransu Maji
Karan Singh
ArXivPDFHTML
Abstract

We present a novel deep-learning based approach to producing animator-centric speech motion curves that drive a JALI or standard FACS-based production face-rig, directly from input audio. Our three-stage Long Short-Term Memory (LSTM) network architecture is motivated by psycho-linguistic insights: segmenting speech audio into a stream of phonetic-groups is sufficient for viseme construction; speech styles like mumbling or shouting are strongly co-related to the motion of facial landmarks; and animator style is encoded in viseme motion curve profiles. Our contribution is an automatic real-time lip-synchronization from audio solution that integrates seamlessly into existing animation pipelines. We evaluate our results by: cross-validation to ground-truth data; animator critique and edits; visual comparison to recent deep-learning lip-synchronization solutions; and showing our approach to be resilient to diversity in speaker and language.

View on arXiv
Comments on this paper