52
14

Segmentation of Liver Lesions with Reduced Complexity Deep Models

Abstract

We propose a computationally efficient architecture that learns to segment lesions from CT images of the liver. The proposed architecture uses bilinear interpolation with sub-pixel convolution at the last layer to upscale the course feature in bottle neck architecture. Since bilinear interpolation and sub-pixel convolution do not have any learnable parameter, our overall model is faster and occupies less memory footprint than the traditional U-net. We evaluate our proposed architecture on the highly competitive dataset of 2017 Liver Tumor Segmentation (LiTS) Challenge. Our method achieves competitive results while reducing the number of learnable parameters roughly by a factor of 13.8 compared to the original UNet model.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.