ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.08418
21
106

Task Allocation in Mobile Crowd Sensing: State of the Art and Future Opportunities

22 May 2018
Jiangtao Wang
Leye Wang
Yasha Wang
Daqing Zhang
L. Kong
    HAI
ArXivPDFHTML
Abstract

Mobile Crowd Sensing (MCS) is the special case of crowdsourcing, which leverages the smartphones with various embedded sensors and user's mobility to sense diverse phenomenon in a city. Task allocation is a fundamental research issue in MCS, which is crucial for the efficiency and effectiveness of MCS applications. In this article, we specifically focus on the task allocation in MCS systems. We first present the unique features of MCS allocation compared to generic crowdsourcing, and then provide a comprehensive review for diversifying problem formulation and allocation algorithms together with future research opportunities.

View on arXiv
Comments on this paper