ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.08182
32
25

Party Matters: Enhancing Legislative Embeddings with Author Attributes for Vote Prediction

21 May 2018
Anastassia Kornilova
Daniel Argyle
Vladimir Eidelman
ArXivPDFHTML
Abstract

Predicting how Congressional legislators will vote is important for understanding their past and future behavior. However, previous work on roll-call prediction has been limited to single session settings, thus did not consider generalization across sessions. In this paper, we show that metadata is crucial for modeling voting outcomes in new contexts, as changes between sessions lead to changes in the underlying data generation process. We show how augmenting bill text with the sponsors' ideologies in a neural network model can achieve an average of a 4% boost in accuracy over the previous state-of-the-art.

View on arXiv
Comments on this paper