ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.07482
11
16

Optimal DR-Submodular Maximization and Applications to Provable Mean Field Inference

19 May 2018
An Bian
J. M. Buhmann
Andreas Krause
ArXivPDFHTML
Abstract

Mean field inference in probabilistic models is generally a highly nonconvex problem. Existing optimization methods, e.g., coordinate ascent algorithms, can only generate local optima. In this work we propose provable mean filed methods for probabilistic log-submodular models and its posterior agreement (PA) with strong approximation guarantees. The main algorithmic technique is a new Double Greedy scheme, termed DR-DoubleGreedy, for continuous DR-submodular maximization with box-constraints. It is a one-pass algorithm with linear time complexity, reaching the optimal 1/2 approximation ratio, which may be of independent interest. We validate the superior performance of our algorithms against baseline algorithms on both synthetic and real-world datasets.

View on arXiv
Comments on this paper