ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.06413
32
185

CASCADE: Contextual Sarcasm Detection in Online Discussion Forums

16 May 2018
Devamanyu Hazarika
Soujanya Poria
Sruthi Gorantla
Min Zhang
Roger Zimmermann
Rada Mihalcea
ArXivPDFHTML
Abstract

The literature in automated sarcasm detection has mainly focused on lexical, syntactic and semantic-level analysis of text. However, a sarcastic sentence can be expressed with contextual presumptions, background and commonsense knowledge. In this paper, we propose CASCADE (a ContextuAl SarCasm DEtector) that adopts a hybrid approach of both content and context-driven modeling for sarcasm detection in online social media discussions. For the latter, CASCADE aims at extracting contextual information from the discourse of a discussion thread. Also, since the sarcastic nature and form of expression can vary from person to person, CASCADE utilizes user embeddings that encode stylometric and personality features of the users. When used along with content-based feature extractors such as Convolutional Neural Networks (CNNs), we see a significant boost in the classification performance on a large Reddit corpus.

View on arXiv
Comments on this paper