ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.06406
16
24

Deep Segmentation and Registration in X-Ray Angiography Video

16 May 2018
Athanasios Vlontzos
K. Mikolajczyk
ArXivPDFHTML
Abstract

In interventional radiology, short video sequences of vein structure in motion are captured in order to help medical personnel identify vascular issues or plan intervention. Semantic segmentation can greatly improve the usefulness of these videos by indicating exact position of vessels and instruments, thus reducing the ambiguity. We propose a real-time segmentation method for these tasks, based on U-Net network trained in a Siamese architecture from automatically generated annotations. We make use of noisy low level binary segmentation and optical flow to generate multi class annotations that are successively improved in a multistage segmentation approach. We significantly improve the performance of a state of the art U-Net at the processing speeds of 90fps.

View on arXiv
Comments on this paper