ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.03777
8
44

Deep Reinforcement Learning for Optimal Control of Space Heating

10 May 2018
Ádám Nagy
H. Kazmi
Farah Cheaib
Johan Driesen
    AI4CE
ArXivPDFHTML
Abstract

Classical methods to control heating systems are often marred by suboptimal performance, inability to adapt to dynamic conditions and unreasonable assumptions e.g. existence of building models. This paper presents a novel deep reinforcement learning algorithm which can control space heating in buildings in a computationally efficient manner, and benchmarks it against other known techniques. The proposed algorithm outperforms rule based control by between 5-10% in a simulation environment for a number of price signals. We conclude that, while not optimal, the proposed algorithm offers additional practical advantages such as faster computation times and increased robustness to non-stationarities in building dynamics.

View on arXiv
Comments on this paper