29
139

Rethinking Diversified and Discriminative Proposal Generation for Visual Grounding

Abstract

Visual grounding aims to localize an object in an image referred to by a textual query phrase. Various visual grounding approaches have been proposed, and the problem can be modularized into a general framework: proposal generation, multi-modal feature representation, and proposal ranking. Of these three modules, most existing approaches focus on the latter two, with the importance of proposal generation generally neglected. In this paper, we rethink the problem of what properties make a good proposal generator. We introduce the diversity and discrimination simultaneously when generating proposals, and in doing so propose Diversified and Discriminative Proposal Networks model (DDPN). Based on the proposals generated by DDPN, we propose a high performance baseline model for visual grounding and evaluate it on four benchmark datasets. Experimental results demonstrate that our model delivers significant improvements on all the tested data-sets (e.g., 18.8\% improvement on ReferItGame and 8.2\% improvement on Flickr30k Entities over the existing state-of-the-arts respectively)

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.