ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.00979
39
105

modAL: A modular active learning framework for Python

2 May 2018
Tivadar Danka
P. Horváth
ArXivPDFHTML
Abstract

modAL is a modular active learning framework for Python, aimed to make active learning research and practice simpler. Its distinguishing features are (i) clear and modular object oriented design (ii) full compatibility with scikit-learn models and workflows. These features make fast prototyping and easy extensibility possible, aiding the development of real-life active learning pipelines and novel algorithms as well. modAL is fully open source, hosted on GitHub at https://github.com/cosmic-cortex/modAL. To assure code quality, extensive unit tests are provided and continuous integration is applied. In addition, a detailed documentation with several tutorials are also available for ease of use. The framework is available in PyPI and distributed under the MIT license.

View on arXiv
Comments on this paper