63
24

Markov Chain Neural Networks

Abstract

In this work we present a modified neural network model which is capable to simulate Markov Chains. We show how to express and train such a network, how to ensure given statistical properties reflected in the training data and we demonstrate several applications where the network produces non-deterministic outcomes. One example is a random walker model, e.g. useful for simulation of Brownian motions or a natural Tic-Tac-Toe network which ensures non-deterministic game behavior.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.