ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.00097
19
12

Syntactic Patterns Improve Information Extraction for Medical Search

30 April 2018
Roma Patel
Yinfei Yang
Iain J. Marshall
A. Nenkova
Byron C. Wallace
ArXivPDFHTML
Abstract

Medical professionals search the published literature by specifying the type of patients, the medical intervention(s) and the outcome measure(s) of interest. In this paper we demonstrate how features encoding syntactic patterns improve the performance of state-of-the-art sequence tagging models (both linear and neural) for information extraction of these medically relevant categories. We present an analysis of the type of patterns exploited, and the semantic space induced for these, i.e., the distributed representations learned for identified multi-token patterns. We show that these learned representations differ substantially from those of the constituent unigrams, suggesting that the patterns capture contextual information that is otherwise lost.

View on arXiv
Comments on this paper