Mapper on Graphs for Network Visualization

Networks are an exceedingly popular type of data for representing relationships between individuals, businesses, proteins, brain regions, telecommunication endpoints, etc. Network or graph visualization provides an intuitive way to explore the node-link structures of network data for instant sense-making. However, naive node-link diagrams can fail to convey insights regarding network structures, even for moderately sized data of a few hundred nodes. We propose to apply the mapper construction--a popular tool in topological data analysis--to graph visualization, which provides a strong theoretical basis for summarizing network data while preserving their core structures. We develop a variation of the mapper construction targeting weighted, undirected graphs, called mapper on graphs, which generates property-preserving summaries of graphs. We provide a software tool that enables interactive explorations of such summaries and demonstrates the effectiveness of our method for synthetic and real-world data. The mapper on graphs approach we propose represents a new class of techniques that leverages tools from topological data analysis in addressing challenges in graph visualization.
View on arXiv