ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.11214
50
1
v1v2v3v4 (latest)

k-Nearest Neighbors by Means of Sequence to Sequence Deep Neural Networks and Memory Networks

27 April 2018
Yiming Xu
Diego Klabjan
ArXiv (abs)PDFHTML
Abstract

k-Nearest Neighbors is one of the most fundamental but effective classification models. In this paper, we propose two families of models built on a sequence to sequence model and a memory network model to mimic the k-Nearest Neighbors model, which generate a sequence of labels, a sequence of out-of-sample feature vectors and a final label for classification, and thus they could also function as oversamplers. We also propose 'out-of-core' versions of our models which assume that only a small portion of data can be loaded into memory. Computational experiments show that our models outperform k-Nearest Neighbors, a feed-forward neural network and a memory network, due to the fact that our models must produce additional output and not just the label. As an oversample on imbalanced datasets, the sequence to sequence kNN model often outperforms Synthetic Minority Over-sampling Technique and Adaptive Synthetic Sampling.

View on arXiv
Comments on this paper