ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.10366
37
6
v1v2 (latest)

Online Convolutional Sparse Coding with Sample-Dependent Dictionary

27 April 2018
Yaqing Wang
Quanming Yao
James T. Kwok
L. Ni
ArXiv (abs)PDFHTML
Abstract

Convolutional sparse coding (CSC) has been popularly used for the learning of shift-invariant dictionaries in image and signal processing. However, existing methods have limited scalability. In this paper, instead of convolving with a dictionary shared by all samples, we propose the use of a sample-dependent dictionary in which filters are obtained as linear combinations of a small set of base filters learned from the data. This added flexibility allows a large number of sample-dependent patterns to be captured, while the resultant model can still be efficiently learned by online learning. Extensive experimental results show that the proposed method outperforms existing CSC algorithms with significantly reduced time and space requirements.

View on arXiv
Comments on this paper