ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.08882
22
26

Mask-aware Photorealistic Face Attribute Manipulation

24 April 2018
Ruoqi Sun
Chen Huang
Jianping Shi
Lizhuang Ma
    GAN
    CVBM
ArXivPDFHTML
Abstract

The task of face attribute manipulation has found increasing applications, but still remains challenging with the requirement of editing the attributes of a face image while preserving its unique details. In this paper, we choose to combine the Variational AutoEncoder (VAE) and Generative Adversarial Network (GAN) for photorealistic image generation. We propose an effective method to modify a modest amount of pixels in the feature maps of an encoder, changing the attribute strength continuously without hindering global information. Our training objectives of VAE and GAN are reinforced by the supervision of face recognition loss and cycle consistency loss for faithful preservation of face details. Moreover, we generate facial masks to enforce background consistency, which allows our training to focus on manipulating the foreground face rather than background. Experimental results demonstrate our method, called Mask-Adversarial AutoEncoder (M-AAE), can generate high-quality images with changing attributes and outperforms prior methods in detail preservation.

View on arXiv
Comments on this paper