6
24

Neural-Davidsonian Semantic Proto-role Labeling

Abstract

We present a model for semantic proto-role labeling (SPRL) using an adapted bidirectional LSTM encoding strategy that we call "Neural-Davidsonian": predicate-argument structure is represented as pairs of hidden states corresponding to predicate and argument head tokens of the input sequence. We demonstrate: (1) state-of-the-art results in SPRL, and (2) that our network naturally shares parameters between attributes, allowing for learning new attribute types with limited added supervision.

View on arXiv
Comments on this paper