ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.07972
19
40

Eval all, trust a few, do wrong to none: Comparing sentence generation models

21 April 2018
Ondřej Cífka
Aliaksei Severyn
Enrique Alfonseca
Katja Filippova
ArXivPDFHTML
Abstract

In this paper, we study recent neural generative models for text generation related to variational autoencoders. Previous works have employed various techniques to control the prior distribution of the latent codes in these models, which is important for sampling performance, but little attention has been paid to reconstruction error. In our study, we follow a rigorous evaluation protocol using a large set of previously used and novel automatic and human evaluation metrics, applied to both generated samples and reconstructions. We hope that it will become the new evaluation standard when comparing neural generative models for text.

View on arXiv
Comments on this paper