ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.04312
18
1
v1v2 (latest)

Clustering via Boundary Erosion

12 April 2018
Cheng-Hao Deng
Wanlei Zhao
ArXiv (abs)PDFHTML
Abstract

Clustering analysis identifies samples as groups based on either their mutual closeness or homogeneity. In order to detect clusters in arbitrary shapes, a novel and generic solution based on boundary erosion is proposed. The clusters are assumed to be separated by relatively sparse regions. The samples are eroded sequentially according to their dynamic boundary densities. The erosion starts from low density regions, invading inwards, until all the samples are eroded out. By this manner, boundaries between different clusters become more and more apparent. It therefore offers a natural and powerful way to separate the clusters when the boundaries between them are hard to be drawn at once. With the sequential order of being eroded, the sequential boundary levels are produced, following which the clusters in arbitrary shapes are automatically reconstructed. As demonstrated across various clustering tasks, it is able to outperform most of the state-of-the-art algorithms and its performance is nearly perfect in some scenarios.More over, it is very fast in large scale. We extend our algorithm to suit for high dimension data and boosting the performance of the state-of-the-art method.

View on arXiv
Comments on this paper