ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.04121
79
360
v1v2 (latest)

The Conversation: Deep Audio-Visual Speech Enhancement

11 April 2018
Triantafyllos Afouras
Joon Son Chung
Andrew Zisserman
ArXiv (abs)PDFHTML
Abstract

Our goal is to isolate individual speakers from multi-talker simultaneous speech in videos. Existing works in this area have focussed on trying to separate utterances from known speakers in controlled environments. In this paper, we propose a deep audio-visual speech enhancement network that is able to separate a speaker's voice given lip regions in the corresponding video, by predicting both the magnitude and the phase of the target signal. The method is applicable to speakers unheard and unseen during training, and for unconstrained environments. We demonstrate strong quantitative and qualitative results, isolating extremely challenging real-world examples.

View on arXiv
Comments on this paper