31
42

Reasoning about Safety of Learning-Enabled Components in Autonomous Cyber-physical Systems

Abstract

We present a simulation-based approach for generating barrier certificate functions for safety verification of cyber-physical systems (CPS) that contain neural network-based controllers. A linear programming solver is utilized to find a candidate generator function from a set of simulation traces obtained by randomly selecting initial states for the CPS model. A level set of the generator function is then selected to act as a barrier certificate for the system, meaning it demonstrates that no unsafe system states are reachable from a given set of initial states. The barrier certificate properties are verified with an SMT solver. This approach is demonstrated on a case study in which a Dubins car model of an autonomous vehicle is controlled by a neural network to follow a given path.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.