ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.02915
30
22

AutoRVO: Local Navigation with Dynamic Constraints in Dense Heterogeneous Traffic

9 April 2018
Yuexin Ma
Tianyi Zhou
Wenping Wang
ArXivPDFHTML
Abstract

We present a novel algorithm for computing collision-free navigation for heterogeneous road-agents such as cars, tricycles, bicycles, and pedestrians in dense traffic. Our approach currently assumes the positions, shapes, and velocities of all vehicles and pedestrians are known and computes smooth trajectories for each agent by taking into account the dynamic constraints. We describe an efficient optimization-based algorithm for each road-agent based on reciprocal velocity obstacles that takes into account kinematic and dynamic constraints. Our algorithm uses tight fitting shape representations based on medial axis to compute collision-free trajectories in dense traffic situations. We evaluate the performance of our algorithm in real-world dense traffic scenarios and highlight the benefits over prior reciprocal collision avoidance schemes.

View on arXiv
Comments on this paper