ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.02595
12
26

Training Multi-organ Segmentation Networks with Sample Selection by Relaxed Upper Confident Bound

7 April 2018
Yan Wang
Yuyin Zhou
Peng Tang
Wei Shen
Elliot K. Fishman
Alan Yuille
    OOD
    SSeg
ArXivPDFHTML
Abstract

Deep convolutional neural networks (CNNs), especially fully convolutional networks, have been widely applied to automatic medical image segmentation problems, e.g., multi-organ segmentation. Existing CNN-based segmentation methods mainly focus on looking for increasingly powerful network architectures, but pay less attention to data sampling strategies for training networks more effectively. In this paper, we present a simple but effective sample selection method for training multi-organ segmentation networks. Sample selection exhibits an exploitation-exploration strategy, i.e., exploiting hard samples and exploring less frequently visited samples. Based on the fact that very hard samples might have annotation errors, we propose a new sample selection policy, named Relaxed Upper Confident Bound (RUCB). Compared with other sample selection policies, e.g., Upper Confident Bound (UCB), it exploits a range of hard samples rather than being stuck with a small set of very hard ones, which mitigates the influence of annotation errors during training. We apply this new sample selection policy to training a multi-organ segmentation network on a dataset containing 120 abdominal CT scans and show that it boosts segmentation performance significantly.

View on arXiv
Comments on this paper