ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.01646
11
34

A Pyramid CNN for Dense-Leaves Segmentation

5 April 2018
Daniel Morris
ArXivPDFHTML
Abstract

Automatic detection and segmentation of overlapping leaves in dense foliage can be a difficult task, particularly for leaves with strong textures and high occlusions. We present Dense-Leaves, an image dataset with ground truth segmentation labels that can be used to train and quantify algorithms for leaf segmentation in the wild. We also propose a pyramid convolutional neural network with multi-scale predictions that detects and discriminates leaf boundaries from interior textures. Using these detected boundaries, closed-contour boundaries around individual leaves are estimated with a watershed-based algorithm. The result is an instance segmenter for dense leaves. Promising segmentation results for leaves in dense foliage are obtained.

View on arXiv
Comments on this paper