ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.00338
74
208
v1v2v3 (latest)

Towards Intelligent Vehicular Networks: A Machine Learning Framework

1 April 2018
Le Liang
Hao Ye
Geoffrey Ye Li
ArXiv (abs)PDFHTML
Abstract

As wireless networks evolve towards high mobility and providing better support for connected vehicles, a number of new challenges arise due to the resulting high dynamics in vehicular environments and thus motive rethinking of traditional wireless design methodologies. Future intelligent vehicles, which are at the heart of high mobility networks, are increasingly equipped with multiple advanced onboard sensors and keep generating large volumes of data. Machine learning, as an effective approach to artificial intelligence, can provide a rich set of tools to exploit such data for the benefit of the networks. In this article, we first identify the distinctive characteristics of high mobility vehicular networks and motivate the use of machine learning to address the resulting challenges. After a brief introduction of the major concepts of machine learning, we discuss its applications to learn the dynamics of vehicular networks and make informed decisions to optimize network performance. In particular, we discuss in greater detail the application of reinforcement learning in managing network resources as an alternative to the prevalent optimization approach. Finally, some open issues worth further investigation are highlighted.

View on arXiv
Comments on this paper