27
19

I-vector Transformation Using Conditional Generative Adversarial Networks for Short Utterance Speaker Verification

Abstract

I-vector based text-independent speaker verification (SV) systems often have poor performance with short utterances, as the biased phonetic distribution in a short utterance makes the extracted i-vector unreliable. This paper proposes an i-vector compensation method using a generative adversarial network (GAN), where its generator network is trained to generate a compensated i-vector from a short-utterance i-vector and its discriminator network is trained to determine whether an i-vector is generated by the generator or the one extracted from a long utterance. Additionally, we assign two other learning tasks to the GAN to stabilize its training and to make the generated ivector more speaker-specific. Speaker verification experiments on the NIST SRE 2008 "10sec-10sec" condition show that our method reduced the equal error rate by 11.3% from the conventional i-vector and PLDA system.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.