ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.00248
11
5

SampleAhead: Online Classifier-Sampler Communication for Learning from Synthesized Data

1 April 2018
Qi Chen
Weichao Qiu
Yi Zhang
Lingxi Xie
Alan Yuille
    3DH
ArXivPDFHTML
Abstract

State-of-the-art techniques of artificial intelligence, in particular deep learning, are mostly data-driven. However, collecting and manually labeling a large scale dataset is both difficult and expensive. A promising alternative is to introduce synthesized training data, so that the dataset size can be significantly enlarged with little human labor. But, this raises an important problem in active vision: given an {\bf infinite} data space, how to effectively sample a {\bf finite} subset to train a visual classifier? This paper presents an approach for learning from synthesized data effectively. The motivation is straightforward -- increasing the probability of seeing difficult training data. We introduce a module named {\bf SampleAhead} to formulate the learning process into an online communication between a {\em classifier} and a {\em sampler}, and update them iteratively. In each round, we adjust the sampling distribution according to the classification results, and train the classifier using the data sampled from the updated distribution. Experiments are performed by introducing synthesized images rendered from ShapeNet models to assist PASCAL3D+ classification. Our approach enjoys higher classification accuracy, especially in the scenario of a limited number of training samples. This demonstrates its efficiency in exploring the infinite data space.

View on arXiv
Comments on this paper