ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.00047
25
41

Conditional End-to-End Audio Transforms

30 March 2018
Albert Haque
Michelle Guo
Prateek Verma
ArXivPDFHTML
Abstract

We present an end-to-end method for transforming audio from one style to another. For the case of speech, by conditioning on speaker identities, we can train a single model to transform words spoken by multiple people into multiple target voices. For the case of music, we can specify musical instruments and achieve the same result. Architecturally, our method is a fully-differentiable sequence-to-sequence model based on convolutional and hierarchical recurrent neural networks. It is designed to capture long-term acoustic dependencies, requires minimal post-processing, and produces realistic audio transforms. Ablation studies confirm that our model can separate speaker and instrument properties from acoustic content at different receptive fields. Empirically, our method achieves competitive performance on community-standard datasets.

View on arXiv
Comments on this paper