ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.10878
11
4

Greedy Variance Estimation for the LASSO

28 March 2018
Christopher Kennedy
Rachel A. Ward
ArXivPDFHTML
Abstract

Recent results have proven the minimax optimality of LASSO and related algorithms for noisy linear regression. However, these results tend to rely on variance estimators that are inefficient or optimizations that are slower than LASSO itself. We propose an efficient estimator for the noise variance in high dimensional linear regression that is faster than LASSO, only requiring ppp matrix-vector multiplications. We prove this estimator is consistent with a good rate of convergence, under the condition that the design matrix satisfies the Restricted Isometry Property (RIP). In practice, our estimator scales incredibly well into high dimensions, is highly parallelizable, and only incurs a modest bias.

View on arXiv
Comments on this paper