ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.09123
31
29

Equation Embeddings

24 March 2018
K. Krstovski
David M. Blei
ArXiv (abs)PDFHTML
Abstract

We present an unsupervised approach for discovering semantic representations of mathematical equations. Equations are challenging to analyze because each is unique, or nearly unique. Our method, which we call equation embeddings, finds good representations of equations by using the representations of their surrounding words. We used equation embeddings to analyze four collections of scientific articles from the arXiv, covering four computer science domains (NLP, IR, AI, and ML) and ∼\sim∼98.5k equations. Quantitatively, we found that equation embeddings provide better models when compared to existing word embedding approaches. Qualitatively, we found that equation embeddings provide coherent semantic representations of equations and can capture semantic similarity to other equations and to words.

View on arXiv
Comments on this paper